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seal ermOdyYRAMICS O Statistical mechar. :
w jos) and classical the \nar:;):r\]dn(li-g-wf.“: ides a link he;uecn quantum mechanics
g ‘*33 R Bescribes the] Hbe!mhé\ o . ra::l.‘?u thermo_d) namics deals with macroscopic
o et . vuiy Lomp'mﬁ:uq ge mrr.b'ﬂ of molecules in terms of properties
- m_ “:mﬂmmner - }i-n‘v}:‘.wctf Quamum mechanics, on the other hand,
: exclusively B meve i H'\: oscopic level. It tells us that each microscopic
described o :}en-\' c’\ er. 71t does not indicate which wave function of
il represent e calculaté‘time r;]:ia &N €D instant. Neither classical thermodynamics
oy LTOSCOpic properties of matter from the MICTOSCOpIC

‘ A m e_qmlll_)rmm property of matter must be

polecules. it is evident that we must use statistical methods to determine this property.
p - which dmls with the compuiation of the macroscopic properties of matter from the
R:LT'::(_{!”, SCOpEc properties of individual atoms (or molecules) is called statistical mechanics
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some kind of an average of a large

omd ‘contnbutions to the subject were made by J.C. Maxwell, L. Boltzmann and

| § Willed Gibbs and several other scientists such as M. Planck, A. Einstein, S.N. Bose, E. Fermi,

aM D IC.lelnn. R.H. Fowler, E.A. Guggenheim, M. Born, P. Debye, L. Onsager, L.D.

o N. Bogo , 3.G. Kirkwood, 1. Prigogine, A. Khinchin, N. Wiener, J.E. Mayer, K.G. Wilson,

M R. Kubo. The 1983 Physics Nobel Laureate, S. Chandrasekhar (1910-1995) was the
guantum statistics to stellar dynamics—in particular, to white dwarfs.
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ics can be applied easily to simple ideal systems such as monoatomic and

. F jon to interacting systems such as liquids (where strong intermolecular
. the details of the intermolecular potential energy, which is not always known
ave to be taken into account. That is why statistical mechanics of liquids 1s 2
mating subject. Gases under high pressures, 00, are difficult to treat statistically
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‘<ronolv from ideality. In recent years statistical methods have been applied
and densetéases Progress in this area has been made possible by the

advanced mathematical methods and high-speed computers which can
'e' highly intractable differential and integro—differential equations
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& - ysical situations encountered in nature are described e

IS Different ph Bollz:ﬂ“ (or M-B) statistics, the Bose-Einstein (or B-E)
viz., the Maxwell- - -« The M-B statistics, developed long before the

ymi-Dirac (or F-D) stansncs. 5 Bose-Einstein statistics

echanics. is also called classical statisics mm'f‘be characteristics of the

cchanic . quantum :

. Statistics gea)lledl\'ﬂyd‘f’d
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stics, the l"““"“I "C'W obeying M-B statistics are called boltzors or
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2. In B-E statistics, the particles are indistinguishable and ar
DCCUpY @ given energy level. This statistics is obeyed lp’ o
hydrogen (H,) deuterium (D), nitrogen (N,), helium-4 (*He) and ¥
statistics are called bosons.

3. In F-D statistics, the particles are indistinguishable but only one o
energy level. This statistics is obeyed by particles having half-integral 1

This - . 1 ‘1;3‘;“ .
electrons, helium-3 (*He) and nitric oxide (NO). Particles obeying F- TR
fermions.

We will mention here. without proof, another equivalent de.fmitgon of fer Xions |
Fermions are those species whose wave functions are antisymmetric with respect to the
particles whereas bosons are those species whose wave functions are symmetric with re pe
exchange of particles. These ideas on quantum statistics are discussed in Chapter 27. .

The three types of statistics are described here,

1. Maxwell-Boltzmann Statistics. Consider a system of N distinguishable pamc!el
energy levels &, &, &, etc. The total number of arrangements for placing 7y particles m the gr
state energy level &), n, particles in the first excited state energy level ¢, n, particles in the seg
excited state energy level &, and so on. is known as the thermodynamic probability,. W, of the g
macrostate. It is, in general, a very large number. Our problem is to determine W.‘ r.e., 1o deter
how many microstates correspond to a given macrostate. It can be shown that W is given by

W N! N!
nlnyglng!e.... n;! TIln!

where N = Xn;.

In Eq. 1, N is the total number of particles and the summation is ove
is possible to realize a given energy level in more than one way, i.e.,
has the same energy. When this happens, the energy leve
degeneracy (or multiplicity) of the energy level &.
ith energy level, there are g; ways of distributing it.
are g‘.2 possible distributions. Thus, for n; particle
distributions. Hence, the thermodynamic probability

r all the energy levels
more than one quantum ’;
| is said to be degenerate, Let g be
This means that if there is one particle in
For two particles in the ith energy level,
s in the ith energy level, there are g pos
for the system of N particles is given by

nj

W = NIIT=
ion!

It is well known that the entropy § and probabilit

the Boltzmann equation, the most famous equation in

X constant

y Wof a given state of a system are rel
statistical mechanics, viz.,

S =klnWw
The probability must be a maximum for an equilibrium state so that at equilibrium
S = kIn Wy,

We are thus interested in finding a distribution that will make W a maximum. It i§
convenient, however, to maximize the logarithm of W. It js known from calculus that @
maximum, the derivative of a function vanishes. Hence, at equilibrium, ks

.....
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élnW
= ;=0
R

If we confine our investigation (0 a closed system of independent particles, it

din W = a(l;:lwdn,+ L2 VR )




A number of particles is constant, i.e..
-. :,T- N = ;"" = constant

5
U, of the system is constant, . e.
E U = Zn; & = constant |
f the total number of particles implies thg;
o — dN = Edn,- =0
":"1.%" of the total energy implies that

dU = Xg dn; = 0

._“]_ logarithms of both sides, we get

*'Jn W = lnN!+Zi:n,-lng, - ZInn,! + constant

. ling approximation according to which, for large x,
BRIt = x In x - x
on for In n; !, Eq. 10 becomes

=

InW = lnN!+ ?n,. Ing; —Xn;Inn, + Zn, + constant
i’l"’ = (NInN-N) +Xn;Ing; — XnInn, + N + constant
. NInN +Zn;Ing, — Zn; Inn; + constant

B i
earing in mind that N and g; are constants, we get

3 .
R Sy, =0
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. dn' *Elnn,- dni = 0
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...(8)
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...(10)
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(19

1d vary without restriction and the varigtlons would be
il ssible to solve Eq. 15 vb.y setting each of the
o. However, our system is not open but closed
.pendent of one another, as is seen from Eq. |
Jow, then, can we solve Eq. 15 subject to the ‘




We can now select values of a and fm such an :
(my. (=1) » zero, the value of dn, being imma \
independent of one another since dn, can be obtained from
position to set each of the coefficients of dn, in Eq. 17 equal

mg/n)-a-Pg=0 or In gn = a+Bg or Inn=

or A e " -

W
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Eq 18 which s one torm of the Boltzmann distribution law, gives the most pr l els for
for a macrostate, + ¢ it gives the occupation numbers of the molecular energy i€v od oy
probable distribution i terms of the energies &, the degeneracy g; and the '

and 1

2. Bose-Einstein Statistics. Consider a system of N indisﬁﬂl““""’.”' N .
particles are in the th energy level with degeneracy g,. The n; particles have to i Y
£ Mates. For the sake of simplicity, imagine that the ith energy IC"'F‘ has g - 1 3
sufficient W scparate the energy level mto g, mtervals. Now the possible number of dis "
particles among the g, states may be determined by permuting the array of pamtwl’ls -
The wtal number of permutations of n, particles and (g, - 1) partitions 1S M,fgr‘”-- A i
partinons and the parnicles are indistinguishable. This implies that interchanging two partit
not alter an arrangement | also interchanging two particles does not alter an arrangement. ’;
must divide (n,+ g~1)! by the number of permutations of the g, - | parutions, WVIZ., (gi-1) a
pumber of permutations of n, particles, viz., n, ! to obtain the number of possible arrangements'
n; particies n the energy level ¢, Thus,
(n, +g - D!
The number of arrangements n’ TP

i

As m the case of Maxwell-Boltzmann statistics, we assume that in the present case
total number of particles is constant and the total energy of the system is also constant, i.e.,
N = In, = constant

!

U = I n, & = constant (E

Thus, the thermodynamic probability W for the system of N particles (i.e.. the number of way
distributing N particles among the various energy levels) is given by k
n - )
W = ntt 8 x constant
¢ onl(g - !

Taking logarithms of both sides of Eq. 20, we get

InW = T(in(n +g -1!-1nn!- In(g, - 1)!] + constant

Here, 100, since n, and g, are very large numbers, we can invoke Stirling’s approximatic n.
Inx!=xlInx - x, to obtain E

In W

Lln +g)In(m +g)-mInn - g Ing] + constant o

where we have set n;+g; -1 = nitgi and g.--l_=g,-. Since, n; is very large, it can be trez ed
continuous variable. Differentiation of Eq. 22 with respect to n; and setting the differential equ:
zero gives for the most probable thermodynamic state of the system, 8

]
o

= X(ln n; -~ In (n;+g)] dn; = 0 or Z[ln ! ]8
5In W {In n £ ; e n

From Eqs. 6 and 7, 8N=‘2,8n,=0



SU - rdn =0
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" the method of Lagrange's unde ’ .
W termined multipliers to Egs. 23, 24 and 25, we get

-

n, I
ln__—"—‘ + © S
2[ w +g) tarBs o _ 0

‘ | .(26)
e B vanations &, are independent of ope another, hence
In +a <+ Re
o +g) O Bs - o 2D
L
n| = +1] o .
whent ["f ] @+ Pa or 2. =e®+Bg --28)
ll,
B A = gflexp (a + Bg) - 1] 29

s 29 is the expression for the most probable distribution of N particles among the various
» ‘according to the Bose-Einstein statistics. o

Sltlhlit-s.~ Consider that the »; particles are distributed among the g; states
where g; . s before, is the degeneracy of the ith energy level. Imagine that the particles
wishable. This implies that the first particle may be placed in any one of the g; states and

e o

% one of these choices, the second particle may be placed in any one of the remaining g - 1
gis, and 50 on. Thus, the number of arrangements is given by the expression g, !/(g; - ).
F‘ Since, however, the particles are indistinguishable, the above expression has to be divided by the

-

r Die num per of permutations of »; particles, viz., n;!. Hence, the number of arrangements of »;

| energy level is given by the expression g; !/(m;! (g, -n) .

Thus. .“'“f rmodynamic probability W for the system of N particles (i.e., the number of ways of
N particles among the various energy levels) is given by

x . w=n &' X constant ~-(30)
. i nl(g - m)!

ums of both sides of Eq. 30, we have
" ;W =X[lng!-Inn!- (g — ) + constant 3D
:-"-VI ‘ -~ -~ -~ -~
i &i ang ;- n; are very large, we can apply Stirling’s approximation, obtaining
In W = Sl - g)In(g - #) - nlnn + g Ing] + constant 32
i i
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an, - Ing, - mISn =0 or T{inn (g -n)}dn =0 B3
constantand U = T = constan,
SU =Sadn=0 L09
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n; = g;/lexp (a + Bg) + 1] ,
Eq: 37 is the expression for the most probable distribution of N particles among the ener gy
according to the Fermi-Dirac statistics. g
Evaluation of Lagrange's Undetermined Multipliers. We now proceed to determine a aj
Since N = Xn, , hence from Eq. 18,

- " . €
¥ 0 e g = N or e % = N/ X g e BE;
§ = i I

Defining a quantity g, called the molecular partition function, as

-BE
leL ;

g =X

we obtain e® = N/g
Accordingly, the Boltzmann distribution law equation (viz., Eq. 18), becomes

o

n = Ng eRBE"/q

The partition function, g, is a quantity of immense importance in statistical thermodynamics, |
shall see presently that by evaluating the partition function for a system we can calculate the va
of any thermodynamic function for that system.

However, before we proceed with the task of evaluating the partition function, let us determ
the constant B. Taking logs of Eq. 2 and applying Stirling’s approximation to In N! and In n;!,
have .

InW=InN!+Z(njlng;-Inn;!)
=NInN-N+3nIng —nlnn +n) =NInN + Xnling — En;lnn
i i i

Taking logs of Eq. 41, we have

Inn; =InN-Ingq + In g - Bg

Substituting in Eq. 43, we get

In W =NInN + ZnilngiZni(lnN —Ing + Ing; — Pg;)

I

NInN + ¥n;ln g — NInN + Nlng -Zn;Ing; +BXn;g;
i i i

= NIng + BU
Substituting this result into the Boltzmann equation (viz., Eq. 3), we have
S =kln W= Nklng + kpU
From the combined statement of the First and the Second laws of thermodynamics.
that for a simple system,
dU = TdS - PdV
At constant volume (V = constant ; dv = 0), dU = TdS

@S/oU)y = 1T

Differentiating Eq. 46 with respect to U at constant V, we get

) ) v ), ()
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9. dg/dp = - Ug/N

. (51)
| .> ¢ Eq. 51 in Eq. 50 results in cancellation of the first and the last terms, giving
@Sy = kB .(52)

zqs. 49 and 52, we find that
| B = UAT .(53)
-39, the molecular partition function q becomes
q =Xg s /AT ...(54)
i

can easily obtain the ratio of the populations, i.e., the number of particles in
;. Thus,

= ﬁ e-' (E,'-Sj)/kT -“(56)



